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Summary. The development of linkage maps with large 
numbers of molecular markers has stimulated the search 
for methods to map genes involved in quantitative traits 
(QTLs). A promising method, proposed by Lander and 
Botstein (1989), employs pairs of neighbouring markers 
to obtain maximum linkage information about the pres- 
ence of a QTL within the enclosed chromosomal seg- 
ment. In this paper the accuracy of this method was 
investigated by computer simulation. The results show 
that there is a reasonable probability of detecting QTLs 
that explain at least 5% of the total variance. For this 
purpose a minimum population of 200 backcross or F 2 
individuals is necessary. Both the number of individuals 
and the relative size of the genotypic effect of the QTL are 
important factors determining the mapping precision. On 
the average, a QTL with 5% or 10% explained variance 
is mapped on an interval of 40 or 20 centiMorgans, re- 
spectively. Of course, QTLs with a larger genotypic effect 
will be located more precisely. It must be noted, however, 
that the interval length is rather variable. 
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Introduction 

The inability to identify the genotype (the alleles) of the 
genes determining a quantitative trait prevents location 
of the individual genes by normal linkage mapping. Bio- 
metrical approaches have been proposed and used to 
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study association between genetic markers and quantita- 
tive trait loci (QTLs) (see, for example, Sax 1923; Thoday 
1961), However, the lack of a sufficient number of genetic 
markers, distributed evenly over the entire genome, has 
hampered further development of these methods. 

This problem has been overcome by the development 
of linkage maps occupied by large numbers of molecular 
markers, such as restriction fragment length polymor- 
phisms (RFLPs) (e.g., Helentjaris 1987; Zamir and Tanks- 
ley 1988; Keim et al. 1990). Several methods have been 
proposed for mapping QTLs, two of which are based on 
estimating linkage between a single marker and a QTL 
(Weller 1986; Luo and Kearsey 1989). However, a disad- 
vantage of a method based on a single marker is that the 
power decreases with increasing distance between the 
marker and the QTL. To increase the efficiency, more 
markers per chromosome need to be employed. The link- 
age information on a putative QTL at a certain chromo- 
somal segment between two co-dominant markers is 
maximal when the segregation information of these two 
markers is used simultaneously. Hence, adding segrega- 
tion information of markers outside such a segment does 
not provide additional linkage information on a QTL 
within this segment. If, however, one (or both) of the two 
markers is dominant, then extra information on a QTL 
within the segment can be gained by employing neigh- 
bouring markers. The co-dominance requirement holds 
for most RFLP markers, but does not hold for the recent- 
ly developed RAPD (random amplified polymorphic 
DNA; Williams et at. 1990; Welsh and McClelland 1990) 
markers. 

Estimation methods based on two, so-called, flanking 
markers have been published by Jensen (1989), Lander 
and Botstein (1989), and Knapp et al. (1990). These au- 
thors apply similar methods based on maximum likeli- 
hood. Jensen's method is specific for doubled haploids. It 
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allows estimation of segregation distortion, which is a 
common phenomenon in doubled haploids and wide (in- 
terspecific) crosses. However,  this approach  only consid- 
ers one pair  of marker  loci. K n a p p  et al. (1990) present a 
n u m b e r  of models for various popula t ion  types, but  here 
again only a single pair  of marker  loci is involved. The 
approach  of Lander  and Botstein integrates information 
on all employed markers  into one, so-called, QTL likeli- 
hood  map. F rom this map  an approximate  posi t ion of a 
QTL is indicated by a suppor t  interval. I t  is the integra- 
tion of all markers  that  makes this method very appeal-  
ing, giving detailed insight into the par t  of the genome 
investigated. In order to provide an indicat ion of the 
at ta inable resolution of this procedure,  the method is 
demonstra ted in their paper  with a single simulated back- 
cross progeny. 

Applicat ions of the Lander  and Botstein approach  
have been presented by Paterson et al. (1988, 1991). In 
their 1990 paper  Paterson et al. described the fine map-  
ping of the QTLs which were originally found in their 
1988 paper.  The results were not  satisfactory. F o r  in- 
stance, a QTL for soluble solids in tomato  was found in 
a segment on chromosome 1 (TG158-TG27) that  showed 
only a non-significant effect in the 1988 study. On the 
other hand, a very significant effect on fruit mass in the 
left region of chromosome 1 (TG24-TG59) as described 
in their 1988 study was not  detected here. Instead, a 
factor on the other side of the chromosome (TG245- 
TG255) was found. Are these discrepancies occasional, or 
are they a sign of the inaccuracy of the method? The aim 
of this paper  is to gain insight into the accuracy of the 
QTL mapping procedure as described by Lander  and 
Botstein (1989). To this end a computer  simulation study 
was performed in which the probabi l i ty  of detecting a 
QTL and the precision of the mapping were investigated 
for backcross and F 2 populations.  

Of course, the accuracy of any QTL mapping proce- 
dure depends on a number  of factors: the heri tabil i ty of 
the trait, the number  of genes involved, the interactions of 
the genes, the distr ibution of the genes over the genome, 
the statistical distr ibution of the random non-genetic fac- 
tors, the type of segregating popula t ion  studied, the size 
of this populat ion,  the genome size, and the number  of 
marker  loci employed, as well as their distr ibution over 
the genome. Because of the large number  of factors in- 
volved, we restrict ourselves to a few relatively simple 
cases, which are described in the Methods  section. 

The QTL mapping procedure 

The QTL mapping procedure, as described by Lander and Bot- 
stein (1989) in a somewhat concise form, will be presented here 
more extensively, applied to a first generation backcross (BC0 
and an F 2 population. Essentially, the method is a maximum 
likelihood approach to the segregation of a mixture of probabil- 

ity distributions (compare Titterington et al. 1985; McLachlan 
and Basford 1988). For each position in the genome (e.g., every 
1 centiMorgan) we want to calculate how likely the presence of 
a segregating QTL at that position is. In order to do that, we 
have to specify the mixture model. Requirements are a known 
and accurate linkage map, and the genotypes of segregating 
marker loci at regular positions on this map of all individuals in 
the cross progeny. The linkage information for a position on a 
chromosome is maximal when the genotype information of the 
two markers flanking this position is used simultaneously. For 
each genotype class of these two markers there is a mixture, 
which consists of two (BCI) or three (F2) normal distributions 
with means #o, #1, or #2 according to the QTL genotype, qq, Qq, 
or QQ, respectively, and equal residual variance a~. The corre- 
sponding probability density functions are denoted as fq (x), with 
q~{0,1,2} for qq, Qq, and QQ, respectively. Because we are 
looking at a specific position on the genome, we are able to sepa- 
rate the effects from QTLs on other chromosomes. Thus, the 
residual variation is caused by QTLs (affecting the same trait) on 
other chromosomes, and by random non-genetic factors. For 
each marker class there would be a separate mixture model. But, 
since these models have the same components fq(x), and the 
mixing proportions are related through the linkage map, one 
general model can be specified. Given the marker genotype m for 
two flanking markers (A and B), their map distance (translated 
into recombination frequency r), and the position of the QTL (Q) 
between the markers (r, and r b denote the recombination fre- 
quencies between A and Q, and Q and B, respectively; 0_< r a _< r; 
when there is no interference, then: r = r, + r b -  2rarb), the pheno- 
typic value x of an individual has the probability density func- 
tion (pdt): 

2 
f(x[m;G) = Z ~mqfq(x) 

q=O 
with: 

m = marker genotype, 
r, = recombination frequency between marker A and QTL Q, 
~mq = probability for QTL genotype q~ {0,1, 2} depending on 

marker genotype m and position determined by r,, 
fq (x) = normal pdf with mean #q and variance a, 2. 

The mixing proportions ~zmq are determined by the segregation 
ratios for the QTL within a marker class, and add up to one. 
These can easily be computed using the expected genotype fre- 
quencies presented in Tables 1 and 2. For instance, the mixing 
proportions for the BC 1 marker genotype AB/AB are: 

ra rb 
~AB/AB0 = 0, 7~AB/AB1 

ra r  b + (1 - r , )  (1 - r b ) '  

(1 - r.) (1 - rb)  
7rAB/AB2 = 

ra r  b 4- (1 - -G) (1  - - r b ) '  

The likelihood, or joint pdf of the entire progeny is: 
N 

L = L(/Zo,#D #2,ar2;XDX2 . . . . .  Xy) = 1~ f(xi[mi;ra)  (1) 
i=1 

Table 1. Expected genotype frequencies in BC x progeny from 
the backcross AQB/aqb x AQB/AQB, multiplied by two 

Genotype Frequency of QTL genotype 

qq qQ QQ 

A.B/AQB 0 r~rb 
A.b/AQB 0 r~ (1 - rb) 
a.B/AQB 0 (1 --r~)r b 
a.b/AQB 0 (1 -- r,) (1 -- rb) 

(1 - r~) (1 - r  0 
(1 - r~) r b 
r.(1 --rb) 
r a r b 



T a b l e  2. Expected genotype frequencies in F 2 progeny from a self fertilised AQB/aqb, multiplied by four 

Genotype Frequency of QTL genotype 

qq qQ QQ 
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2 2 2 r . ( l _ r ~ ) r b ( l _ r b  ) AA BB r a r b 
Bb 2r 2 rb(1 -- rb) 2r.(1 -- r.) [r~ + (1 -- rb) 2] 
bb r 2 (1 -- rb) 2 2r.(1 -- r.) rb(1 -- rb) 

Aa BB 2r.(1--r . )  rb z 2[r2 + (1 -- r.)2] rb(1 --rb) 
Bb 4r .( l  - r~) rb(1 -- rb) 2 [r~ + (1 -- r.) 2] [rb 2 + (1 -- rb) 2] 
bb 2r.(1 -- r.) (1 -- rb) 2 2 [r~ + (1 -- r.) 2] rb(l -- rb) 

aa BB (1--r.)2 rb 2 2r .(1--r . )  rb(1--rb) 
Bb 2(1 -- r~) 2 rb(1 -- rb) 2r.(1 -- ra) [r~ + (1 -- rb) 2] 
bb (1 - r.) 2 (1 --rb) 2 2r.(1 -- r~) r b(l -- rb) 

(1 - r~)  2 (1 - rb )  2 
2(1 - r~)  2 rb(l - - rb)  
(1 - r . )  2 r~ 

2ra(l - r~)  (1--rb) 2 

4r . ( l  - r.) rb(1 -- rb) 
2r. (1 -- r~) r~ 

r~(1 --rb) z 
2 r. z r b (1 -- rb) 
r.~r~ 

with: 

x i = phenotypic value of individual i, 
m~ = marker genotype of individual i, 
N = number of individuals. 

The values of#o, #1, #z and cr z that maximise this likelihood are 
the maximum likelihood estimates. In order to maximise L with 
respect to 0 ~ {/~o, #1,/~2, ~r~}, we may maximise In (L) by differen- 
tiation: 

~ l n g  _ ~ I 1 ~ ~mqf0q_(Xi) 1 
a0  i=1 f(xilmi;ra) q=O 

- ~ ~ ~ u ~  fq_(xi) ~ln~(xi)]  
- ~= 1 q=o  l_f(x~ I mi ;  ra) ' (2) 

Define: 

~q (Xi [mi; ra) = Z~rnq fq(xi) 
f(xilmi; r ,) '  

i.e., the probability of an individual to be of QTL genotype q at 
the locus determined by r,, if it has phenotypic value x, and 
conditional on its marker genotype m. When the derivatives are 
set equal to zero, the resulting equations can be solved for 0 (see 
Appendix): 

N 
E [~q (Xi ] mi; ra) xi] 

/~q = i= 1N , (3 a) 

0~q(Xil mi; r~) 
i=1 

and: 
1 N 2 

^ 2  
o-~ - ~ i~1 q~20 [C~q (x i ] m i; r .)  (x i - -  #q)2] .  (3 b) 

These solutions are, in fact, the weighted means and weighted 
mean square, respectively; the weights are the conditional prob- 
abilities %(-). The solutions are recursive, unless the QTL coin- 
cides with one of the two markers, i.e., r . = 0  or r .= r .  In the latter 
case it is easy to show that the solutions are the analysis of 
variance estimators of the marker class means and residual vari- 
ance [except for the degrees of freedom, for which N is used 
instead of(N--2)  or ( N - 3 )  with BC 1 or Fz, respectively]. In the 
former case, however, there are no explicit solutions. In that case 
solutions to the likelihood equation (1) can be obtained with 
several numerical methods. A convenient and fast iterative 
method is the EM algorithm (E, expectation; M, maximisation; 
Dempster et al. 1977). The EM algorithm is a general method for 
calculating maximum likelihood estimates from incomplete 
data. Applied to the analysis of mixture distributions, the mem- 

berships of the distributions are the missing data. To be specific 
for QTL mapping: the genotype at the Q-locus is unknown. 

The E-step concerns the expectation of the missing data, 
conditional on the known data and some initial approximate 
values of 0 E {#o, #1,/z2, cry}. The M-step determines new values 
for 0 by maximising the log-likelihood using the initial values of 
0 and the expected values of the missing data calculated in the 
E-step. This is done with equations (3). The E- and M-steps are 
executed alternately, each time replacing the former values with 
the newly estimated ones, until the log-likelihood stops increas- 
ing. However, for QTL mapping the expectations of the geno- 
type at the Q-locus are fully determined by the fixed map posi- 
tion, i.e., ra, which are the mixing proportions n~q. Hence, the 
E-step in this procedure always results in the same values. Be- 
cause the mixing proportions are fixed the method is not an 
exact form of EM. It is possible to incorporate the estimation of 
mixing proportions in a comparable estimation procedure (see, 
for example, Knapp et al. 1990). This, however, will lead to 
discrepancies with the map distance between the markers, which 
is assumed to be known accurately from previous experiments. 

The mixing proportions are probabilities, and the real distri- 
bution of QTL genotypes in a finite sample will not be exactly 
equal to these proportions. Since in the procedure the mixing 
proportions are fixed, this will lead to errors. These are assumed 
to be of minor importance when the map distance between 
markers is small, because: (1) in marker classes, that are non- 
recombinant for the markers, the probabilities for two out of the 
three QTL genotypes are very small, since these require at least 
one double recombination; (2) each recombinant marker class is 
relatively small in number. 

The iterative solution employs equations (3). Appropriate 
starting values for the QTL genotype means and residual vari- 
ance are the population mean and variance, respectively. A new 
set of parameter values is calculated by substituting the current 
set of values in the fight hand side of equations (3). For each 
iteration the log-likelihood value is calculated; the iterations are 
stopped when this value does not increase more than a certain 
predefined fractional tolerance value (e.g., 10-6). 

When the null hypothesis, Ho:#0 = tq = #z (in effect mean- 
ing there is no QTL) is true, the likelihood can be calculated: 

N 
2 . XN) I~ f(xi) L0 (]Apop, O-pop, x 1, x2,...  , 

i=1 
with: 

/Zpop = population (BC 1 or F2) mean 
%Zop = population variance 
f(x) = normal pdf with mean #pop and variance ergo p. 
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A likelihood ratio test statistic for the alternative hypothesis, 
that a QTL is segregating at the current position, is transformed 
into a so-called LOD score (LOD = log of odds): 

10 l_  _ V L (/20' # 1 '  # 2 '  0"2 ; Xl ' X2 . . . . .  XN)'] 
r o D =  [ ..... xN) J og - - - ~ -  . 

For a single test the LOD score, when H o is true, is asymptoti- 
cally distributed as a chi-square random variable (V21~ e)Z 2 
with I degree of freedom for a BC 1 and 2 dffor an F 2 population. 
The difference between BC 1 and F2 is caused by the fact that 
with a BC 1 actually the existence of just two QTL genotypes is 
tested, whereas with an F z there would be three QTL genotypes. 
It should be mentioned that there is some debate about the 
correctness of the asymptotic approximation (see Titterington 
et al. 1985, section 5.4). Knapp et al. (1990), for instance, would 
use 4 df for an F z. 

The LOD score is calculated for positions at regular dis- 
tance [e.g., I centiMorgan (cM)] between the outer markers of 
each chromosome, always employing the two nearest flanking 
markers. A QTL likelihood map is constructed by plotting the 
LOD score against the genome map, an example is shown in 
Fig. 1. Such a map can be regarded as the likelihood profile for 
the position of a QTL, although in principle it is a connected 
series of likelihood profiles for chromosome segments between 
two neighbouring markers. The fact that LOD scores for neigh- 
bouring segments are calculated with one shared marker and 
one marker different, results in a curve that is angled at the 
marker locations. 

The maximum likelihood estimator of the position of the 
QTL is the point on the map for which the graph has its maxi- 
mum. To obtain a sort of a confidence interval of the position of 
the QTL, a so-called one-LOD support interval is constructed 
by taking the two positions, left and right of the point estimate 
of the QTL, that have a LOD score of one less than the maxi- 
mum (Fig. 1). One LOD less corresponds to a probability of a 
factor ten less than the most likely position. In a similar way a 
support interval of an arbitrary LOD value can be constructed. 

The location of the QTL is of course of primary interest. 
Secondary, but nonetheless important, are the additive genetic 
effect and the dominance deviation of the QTL. For  these esti- 
mates the values of #o, #1, and #2 at the estimated position of the 
QTL are used. Only the F z allows for estimation of additive and 
dominance effects; in the case of the BC 1 the dominance effect 
cannot be determined, whereas the estimated additive effect is 
biased by dominance, if present. 

The model assumes normal distributions as the mixing com- 
ponents. However, if the number of genes involved in the studied 
trait is small, say less than five, then the normality assumption 
may not be correct, especially if the heritability is very high (say 
> 0.75). In such a situation the genetic part of the residual vari- 
ation is multinomial (van Ooijen 1989). It is assumed that in such 
a case QTLs can be mapped initially with the present method, 
resulting in few QTLs with relatively large estimated effects, and 
afterwards an appropriate model may be fitted. 

In practice, there will always be individuals for which the 
marker genotype can not be determined, mostly because of tech- 
nical difficulties in the laboratory. The method, described above, 
can readily be extended for these missing marker values. In such 
a case the likelihood contribution of an individual for a given 
position in the genome is based upon the closest known flanking 
markers. In the EM iterations the C~q(.)'s have to be based on 
these markers. If only a marker on one side happens to be 
known, the likelihood contribution can only be based on this 
one marker, and appropriate mixing proportions (nmq) and 
C~q (.)'s will have to be calculated. If in the extreme ease no flank- 
ing markers are known, one might either not use this individual 
in the QTL mapping procedure, since it will not be very informa- 
tive, or else use the expected segregation ratios of a QTL inde- 
pendent of a marker (0: 1/2:V2 for a BC1, or 1//4:1//2 : 1//4 for an F2) 
as the mixing proportions. 

Methods 

Because of the large number of factors that influence the accu- 
racy of QTL mapping, we restrict ourselves to a few relatively 
simple cases. A first generation backeross (BC1) and a n  F 2 pop- 
ulation are studied. The cross parents are homozygous. The 
population size is 100, 200, or 400 individuals. Only one chromo- 
some with a single segregating QTL is simulated, with an addi- 
tive but no dominance effect. The random non-genetic factors 
follow a normal distribution with zero mean and an appropriate 
variance ae 2 . The random non-genetic variance was chosen such 
that the QTL explained 1%, 5%, or 10% of the total variance, 
i.e., genetic plus non-genetic variance equals 100%. For a popu- 
lation size of 100, and for an explained variance of 1% the 
simulation consisted of 1000 replications, and 500 replications 
otherwise. 

Chromosome length is 120 cM, which is the average chro- 
mosome length of tomato (Lycopersicon esculentum), a crop spe- 
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Fig. 1. Example of a QTL likelihood map. Result 
of a simulated trial with a n  F 2 population of 400 
individuals, a QTL (at map position 62.5 cM) that 
explains 10% of the total variance, and a segre- 
gating marker every 5 cM. The construction of a 
one-LOD support interval is demonstrated 



cies of major mapping interest. The average chromosome length 
for various studied plant species is roughly 100 cM (O'Brien 
1990). Interference is assumed to be absent. There is a segregat- 
ing marker locus every 5 cM (starting at position 0 cM) and the 
map positions are assumed to be known precisely. In practice 
one would not determine all marker loci at once. Initially one 
would start with markers, say, every 20 cM, and when the LOD 
score tends to be significant, additional markers would be em- 
ployed. In this computer simulation, however, all markers are 
determined. The position of the QTL is in the middle between 
two markers at 62.5 cM, presumably the worst possible location 
between two markers, because when the QTL is closer to one 
marker the power of the mapping is assumed to be higher. 

A model for a single QTL is fitted, as described in the previ- 
ous section. The LOD score is calculated at positions every 
1 cM. When a maximum LOD score for a chromosome exceeds 
the significance threshold, support intervals are constructed of 
0.5, 1, 2, and 3 LOD. The significance threshold has been deter- 
mined beforehand, also by simulation (see below). Concerning 
the support intervals the following observations were made: 
(1) whether the interval enclosed the QTL, and (2) the length of 
the interval. 

L O D  s ign i f i cance  threshold  

As has been mentioned above, when the null hypothesis is true, 
the LOD score for a single test behaves as a chi-square random 
variable (multiplied by a certain constant). However, in the mak- 
ing of a QTL likelihood map a series of correlated tests are 
performed, and not just a single test, the correlation being caused 
by linkage. Such a series is, in fact, a stationary stochastic pro- 
cess. In order to obtain a significance threshold for the maximum 
of a QTL likelihood map, one needs the distribution of the 
maximum value of the corresponding stationary process. Lander 
and Botstein (1989; proposition 2) present an approximating 
equation to obtain a critical value of the maximum LOD score 
for a backcross progeny, but not for an F 2 . Therefore, the prob- 
ability distribution function of the maximum LOD score (of one 
chromosome), when H o is true, was obtained by simulation. For 
both a BC 1 and an F 2 a population of 100 individuals was simu- 
lated, analogous to the method described above, except that the 
QTL was missing. In each replication the QTL likelihood map 
was calculated, and the maximum LOD score for the chromo- 
some determined. The results, based on 16 000 replications, are 
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presented in Fig. 2. Table 3 and Fig. 3 give the right hand tail of 
the distributions. 

If we are to simulate tomato with its twelve chromosomes, 
and we want an overall significance level of 0.05, then per 
( i n d e p e n ~ h r o m o s o m e  we need a significance level of 
1 - 1 ~x/(1-0.05) = 1-0.9957 =0,0043. According to Table 3 the 
corresponding LOD thresholds are 3.0 and 3.7 for BC 1 and F2, 
respectively. The value of BC~ is somewhat larger than indicated 
by Lander and Botstein (their Fig. 4), presumably due to a larger 
chromosome length (120 vs 100 cM). The LOD threshold for an 
F 2 is larger than for a BC~ due to the fact that the LOD score 
for an F 2 has two degrees of freedom versus one for a BC 1. 

R e s u l t s  

The fract ion of the repl icat ions that  resulted in a signifi- 
can t  m a x i m u m  L O D  score, in fact the probabi l i ty  of 
detect ing the QTL,  is shown in  Table 4. It  is clear tha t  this 
depends  on  the n u m b e r  of individuals  in the test, and  on  
the size of the genetic effect of the QTL.  On ly  when  a 

p o p u l a t i o n  of at least 200 individuals  is employed,  is 
there a reasonable  chance of detect ing a Q T L  that  ex- 
plains  5% or more  of the total  variance.  The results also 
indicate that  these fractions are slightly smaller  for an  F 2 
t han  for a BC 1 in s i tuat ions  with the same n u m b e r  of 
individuals  and  the same explained var iance of the QTL.  
This  might  be due to an  inappropr ia te  L O D  threshold,  
bu t  the n u m b e r  of repl icat ions (16 000) used in its deter- 
m i n a t i o n  would  seem adequate ,  especially when  viewing 
the smoothness  of the graphs  of the d i s t r ibu t ion  funct ions  
(Fig. 3). So, apparent ly ,  the power  to detect a QTL,  when  
there is one, is slightly less for an  F 2 t han  for a BC 1. This 
mus t  be due to the fact that  three mixing  componen t s  
have to be est imated in an  F 2 vs two in a BC1. However,  
these s i tuat ions  are no t  directly comparable ,  since a Q T L  
that  explains a certain fraction of the tota l  var iance  in a 
BC l,  explains more  t han  that  f ract ion in  an  F 2. The  
addit ive genetic var iance  of a Q T L  in an  F~ is twice that  
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Fig. 2. Cumulative distribution function of 
the maximum LOD score of a chromosome of 
120 cM length with no QTL segregating and a 
segregating marker locus every 5 cM, for a 
BC 1 and an F 2 progeny. Determined by 16 000 
simulated trials 
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Fig. 3. Upper tail of the cumulative distribution 
function of the maximum LOD score of a chro- 
mosome of 120 cM length with no QTL segregat- 
ing and a segregating marker locus every 5 cM, 
for a BC~ and an F 2 progeny. Determined by 
16 000 simulated trials 

Table 3. Upper tail of the cumulative distribution function of 
the maximum LOD score of a chromosome of 120 cM with no 
QTL segregating and every 5 cM a segregating marker locus, 
FBc 1 (LOD) and Fvz(LOD), respectively, for a BC 1 and an F z 
progeny. Determined by 16 000 simulated trials 

LOD F~c,(LOD ) FF2(LOD ) LOD F~c,(LOD ) FF2(LOD ) 

2.0 0 .96713 0.85638 3.7 0 .99906  0.99588 
2.1 0 .97444  0.87950 3.8 0 .99925 0.99644 
2.2 0 .97800 0.89981 3.9 0 .99925 0.99694 
2.3 0 .98238 0.91850 4.0 0 .99950 0.99756 
2.4 0 .98525 0.93331 4.1 0 .99969 0.99800 
2.5 0 .98856 0.94513 4.2 0.99981 0.99838 
2.6 0 .99063 0.95475 4.3 0 .99988 0.99881 
2.7 0 .99263 0.96206 4.4 0 .99988 0.99913 
2.8 0.99363 0.96806 4.5 0 .99994 0.99931 
2.9 0 .99500 0.97369 4.6 0 .99994 0.99944 
3.0 0 .99606 0.97750 4.7 0 .99994  0.99969 
3.1 0 .99669 0.98188 4.8 0 .99994 0.99981 
3.2 0 .99731 0.98525 4.9 0 .99994  0.99981 
3.3 0 .99781 0.98806 5.0 0 .99994 0.99981 
3.4 0 .99819 0.99156 5.1 0 .99994 0.99981 
3.5 0 .99869 0.99350 5.2 1 .00000 0.99994 
3.6 0 .99888 0.99469 5.3 1 .00000 1.00000 

Table 4. Fraction of the simulations that obtained a significant 
LOD score. N, population size,' . crox p2 , fraction of the total vari- 
ance explained by the QTL 

N 2 O'ex p 

BC 1 F2 

0.01 0.05 0.10 0.01 0.05 0.10 

100 0.01 0.11 0.41 0.02 0.06 0.31 
200 0.02 0.41 0.87 0.02 0.29 0.79 
400 0.07 0.84 1.00 0.05 0.76 1.00 

variance in a BC 1, which leads Lander  and Botstein 
(1989) to the conclusion that  an F 2 is nearly twice as 
powerful for detecting a certain QTL as a BC 1. However,  
this two-fold genetic variance in an F 2 holds for the other 
QTLs as well (if there is more than one QTL). Therefore, 
the total  variance (due to all QTLs plus non-genetic vari- 
ance) also increases substantially,  while the non-genetic 
variance remains the same. Hence, the fraction of the 
variance explained by a single QTL in an F 2 will be less 
than twice this fraction, down to even the same fraction, 
in a BC 1, depending on the total  number  of QTLs and the 
propor t ion  of their genetic effects. Table 5 demonstrates  
a few examples of the relation between the fraction ex- 
plained variance in a BC 1 and an F 2. The effect of dom- 
inance is to reduce or enlarge the explained variance in 
the BC 1 depending on whether the backcross is to the 
dominant  or the recessive homozygote,  respectively, 
whereas in an F 2 both homozygotes  are always present. 
Thus, since the comparison of BC1 with F2 depends par-  
t icularly on the number  of QTLs determining the trait, 
this has to be based upon the explained variance of the 
QTL, which also stresses the fact that  the mapping proce- 
dure is a method of segregating a mixture of probabi l i ty  
distributions. 

When  a significant maximum L O D  score was ob- 
tained, support  intervals were constructed for four differ- 
ent L O D  levels, and the frequency with which the actual 
QTL was enclosed was observed (Table 6). This also de- 
pends on the number  of individuals and on the fraction 
of the variance explained by the QTL. Since the suppor t  
intervals serve as a confidence interval, one requires a 
95% confidence rate, as is normal  in biological research. 
In that  case it appears  that  a support  level of two L O D  
is necessary for the simulated situations. 

The length of the suppor t  interval is of interest. F o r  
breeding purposes it is impor tant  to know down to which 



Table 5. Relation between the fraction of the total variance ex- 
plained by a QTL in a BC 1 and this fraction in an F 2 depending 
on the total number (nr) of unlinked QTLs with an additive 
effect of the same size. Dominance is absent 

BC, nr F 2 BC 1 nr  F 2 BC 1 nr F 2 

0.01 1 0.0198 0.05 1 0.0952 0.10 1 0.1818 
2 0.0196 2 0.0909 2 0.1667 
3 0.0194 3 0.0870 3 0.1538 
4 0.0192 4 0.0833 4 0.1429 
5 0.0190 5 0.0800 5 0.1333 

10 0.0182 10 0.0667 10 0.1000 

Table 6. Fraction of the support intervals that enclosed the 
QTL, N, population size; LOD, level of the support interval; 
a~x p, fraction of the total variance explained by the QTL 

N LOD a2xp 

BC1 F 2 

0.05 0.10 0.05 0.10 

200 

400 

0.5 0.59 0.74 0.57 0.66 
1.0 0.78 0.90 0.73 0.85 
2.0 0.94 0.99 0.92 0.98 
3.0 1.00 1.00 0.99 0.99 

0.5 0.70 0.82 0.66 0.77 
t.0 0.84 0.95 0.84 0.94 
2.0 0.96 0.99 0.96 0.99 
3.0 1.00 1.00 0.99 1.00 

Table 7. Mean and standard deviation (in brackets) of the 
length of the support interval. Units, cM; N, population size; 
LOD, level of the support interval; ~r2xp, fraction of the total 
variance explained by the QTL 

N LOD cr2xp 

BC1 F2 

0.05 0.t0 0.05 0.10 

200 

400 

0.5 10 (4) 9 (4) 9 (3) 9 (3) 
1.0 17 (8) 15 (6) 16 (6) 14 (6) 
2.0 37 (15) 29 (13) 33 (13) 28 (12) 
3.0 70 (26) 50 (24) 60 (23) 47 (22) 

0.5 9 (4) 7 (3) 9 (3) 7 (2) 
1.0 15 (7) 11 (4) 14 (6) 11 (4) 
2.0 31 (15) 18 (8) 27 (13) 19 (8) 
3.0 53 (26) 27 (12) 47 (22) 28 (13) 

range on a chromosome a QTL can be located. If the 
range is large, it may contain more interesting loci, and 
hence further research would be needed to obtain a better 
resolution of the area. For  the molecular biologist it is 
important  to know if it is practical to consider cloning the 
gene, bearing in mind, of course, the variability in the 
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relation between linkage and physical distance. Table 7 
presents the average and standard deviation of the length 
of the support intervals. Support intervals of L O D  level 
0.5 or I show reasonably short lengths, but as we have 
seen above, they often do not enclose the QTL. If we use 
a safe support level of two LOD,  we can expect a length 
of around 20 to 40 cM. However, if we look at the stan- 
dard deviations in Table 7, it is clear that these lengths are 
rather variable. 

D i s c u s s i o n  

We have seen that the QTL mapping procedure of 
Lander and Botstein (1989) enables one to determine a 
map position of QTLs quite well. Of course there are 
limitations. QTLs with a small additive effect (aZxp = 1%) 
are very unlikely to be detected. A population size of at 
least 200 individuals is necessary, unless one is only inter- 
ested in genes with a very large effect (a~xp>10%). A 
population size of 400 individuals seems currently the 
largest practically feasible with respect to the R F L P  side 
of the work. Therefore, it can be expected that with this 
mapping procedure QTLs with an explained variance of 
at least 5% stand a good chance of being detected. Pater- 
son et al. (1991) in their mapping experiment with an F2 
of 350 individuals found various QTLs for a number of 
traits, of which the estimated explained variance was al- 
ways above 4%. This is in agreement with our results, 
although this fraction will probably stand in relation to 
the applied significance threshold of the L O D  score and 
the population size. In their paper, amongst other things, 
the effect of environment on QTL expression was investi- 
gated. Only four genes were detected that were expressed 
in the three environments studied, while 25 others were 
expressed in two or one environment. This might indeed 
reflect genotype x environment interaction. However, the 
residual variation caused by random non-genetic factors 
(environment) may differ largely over environments, and 
also the size of replication (in this case the number of F 3 
progeny) influences the residual non-genetic variation. 
The magnitude of the non-genetic residual variation di- 
rectly influences the explained variance of a QTL, and 
thus its L O D  score. So, a comparison across environ- 
ments definitely needs good estimates of the non-genetic 
residual variance in all environments. These estimates 
must be employed, in one way or another, in the assess- 
ment of the QTL likelihood maps; simply applying the 
same L O D  significance threshold does not seem to be 
correct. 

As mentioned in the introduction, the results of the 
fine mapping by Paterson et al. (1990) were not satisfac- 
tory. A non-significant effect of chromosome 1 on soluble 
solids in their 1988 study (Paterson et al. 1988) had be- 
come significant with their fine mapping technique; the 
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size of the estimated additive effect being approximately 
the same. However, in the light of the present simulation 
results, it would appear that the non-significant peak in 
the soluble solids LOD score in the 1988 study might just 
as well have been an artefact, because it is well below the 
LOD significance threshold. It remains unclear, why the 
very significant effect of chromosome 1 on fruit mass is 
not detected with the fine mapping experiment. If we 
construct a two-LOD support interval, it seems very pos- 
sible, that the responsible QTL lies just outside the region 
of the available markers. 

The precision of estimating the location of the QTL 
may be somewhat disappointing, especially for gene 
cloning purposes. For these purposes fine mapping tech- 
niques, such as studying near-isogenic lines, will be neces- 
sary to obtain a better resolution. But for breeding pur- 
poses the precision seems adequate, although this will 
always depend on the importance of the other genes in 
the area of the mapped gene. Of course, genes with a 
genotypic effect larger than the ones studied in this paper 
will be mapped with greater precision. 

Only a few relatively simple cases have been studied 
so that many questions still remain. An important one is, 
what would be found if two segregating QTLs are located 
on the same chromosome. In contrast to other methods, 
this mapping procedure with its QTL likelihood map, 
may, at least theoretically provide some insight into the 
possibility of two segregating QTLs. An example is given 
by Lander and Botstein (1989, Fig. 3), in which the QTLs 
are 80 cM apart. If the QTLs are closer to each other they 
will behave more like one locus with an added effect of 
the linked alleles. In the case where the loci are in repul- 
sion in the Fa, the possibility exists that not even one 
QTL will be discovered. Much attention is needed on the 
strategy to be followed for fitting models with multiple 
QTLs. 

Another important question relates to the fact that 
the analysis is based on a marker linkage map, which is 
accurately known from many previous experiments. For 
current mapping experiments the linkage map is often 
estimated from the same individuals on which the QTL 
mapping is done. Such a map might be less precise, but 
it will relate better to the recombination events in the 
cross. Probably there is no such thing as "the map" of 
a crop species, but rather each cross (especially wide 
crosses) may have its own map with some areas with 
higher and other areas with lower recombination rates, 
although the order of markers will be unchanged. Thus, 
while a map based on many previous experiments may be 
precise, it may also be biased for the cross that is being 
analyzed. The question is whether this has a large impact 
on the quality of the QTL mapping procedure. 

As mentioned before, in practice there will always be 
missing data on the marker genotypes. Since this leads to 
lower LOD scores, and since the amount of missing data 

will vary across markers, this has an effect on the com- 
parability of LOD scores on different parts of a chromo- 
some, unless that amount is not excessive. More or less 
the same applies to dominant markers. Dominance of 
markers will lead to lower LOD scores, and hence com- 
paring LOD scores based on dominant, with LOD scores 
based on co-dominant markers becomes difficult. 

Another point of attention is the rather concave be- 
haviour of the QTL likelihood map often observed be- 
tween two neighbouring markers, which does affect the 
corresponding estimates of means and residual variance. 
Examples of this can be seen in Fig. 1, but it can be much 
more serious in cases with markers further apart (data 
not shown). Since the positions on the map coinciding 
with markers give unbiased analysis of variance estimates 
of means and residual variance, this indicates a possibly 
large bias at the positions in between two neighbouring 
markers. This might have consequences for the estima- 
tion of the position of the QTL, especially when markers 
are not equally spaced in a region with a segregating 
QTL. 

There are two final remarks to make. One is that if a 
QTL is estimated to lie near the end of a chromosome, it 
will be very convenient to know that the marker at the 
end of the map is genuinely telomeric, thus ensuring that 
the QTL support interval does not extend beyond this 
marker. Thus, telomeric markers are very important. The 
second remark is that many important quantitative traits 
are not normally distributed. For instance, many diseases 
are scored on some ordinal scale, and can be treated as 
ordered categorical data. A threshold model (e.g., Fal- 
coner, 1981) can be incorporated into the described QTL 
mapping prodecure; threshold models can be fitted to 
data by maximum likelihood (Jansen 1991). Another so- 
lution would be to use a nonparametric method at each 
marker, such as the Wilcoxon rank-sum test when there 
are only two marker classes (BC1), or else use the 
Kruskal-Wallis test. 
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Appendix 

In order to solve the derivatives (2) for 0 we need the 
derivatives of the logarithm of the pdf fq(X): 

fq(X) - exp 
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SO: 

in fq(x) = - 1/2 In 2re - Y21naar + - -  

The derivatives are: 

(X -- #q)2 
2 ~ - - 2 a  r 

In fq (x) x - /~q 
2 #q, ar 

if q = q ' ,  

and: 

lnfq(X) = 0  if q # q ' ,  
~/~q, 

and: 

In fq (x) - 1 (x - #q)2 

a~ 2a~ 2(a~) 2 

When we substitute these derivatives into equat ion (2) 
we get: 

a l n L  ~ [O~q (Xi i mi; ra) Xi-- #q~ 
~#~ ~:~ ~ J '  

and: 

~lng ~ ~ {O{q(Xl ] 1Tli; ra) I -- 1 (xi --/Aq)2~ 
~0"r 2 -- i=lq:0 2~Gr 2-[- ~ _]J" 

When these equations are set equal to zero, it is easy to 
obtain the solutions (3). 
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